杨元合

中国科学院植物研究所

浏览次数

655

收藏次数

0

接洽次数

0

  • 杨元合
  • 研究员
杨元合,男,博士,研究员,博士生导师。

1981年8月出生于青海省乐都县,2003年7月获北京大学环境科学学士学位,2008年7月获北京大学自然地理学博士学位,2008-2012年间先后赴美国俄克拉荷马大学和英国阿伯丁大学进行合作研究,2012年7月到中国科学院植物研究所工作,成立了高寒生态格局与过程研究组,2013年获得基金委“优秀青年科学基金”资助,2018年获得“国家杰出青年基金”资助,入选科技部“中青年科技创新领军人才”,2019年入选国家“万人计划”科技创新领军人才。曾获“中国科学院青年科学家奖”、美国生态学会亚洲分会“青年生态学家奖”、“全国百篇优秀博士学位论文”、中国生态学会“青年科技奖”、“青藏高原青年科技奖”、“中国科学院优秀导师奖”等荣誉。曾任Global Change Biology编委,现任植被与环境变化国家重点实验室副主任、中国植物学会理事、中国生态学学会理事、北京生态学会秘书长、植物生态学会专业委员会委员;Journal of Integrative Plant Biology副主编、Frontiers in Plant Science编委、《植物生态学报》副主编、《植物学报》编委。

主要研究方向:

以青藏高原高寒生态系统为研究对象,基于野外观测、控制实验、室内培养和模型模拟等手段,重点开展:(1)土壤与全球变化;(2)生态系统碳-氮-磷循环及其交互作用研究。本研究组每年招收博士和硕士研究生,热忱欢迎对上述研究方向感兴趣的同学申请或报考。

主持和参加的科研项目:

[1] 国家杰出青年科学基金项目(31825006),“全球变化生态学”,项目主持人,在研;

[2] 国家自然科学基金面上项目(31670482),“热喀斯特对土壤碳组分的影响及其途径—以热融沟为例”,项目主持人,在研;

[3] 中国科学院前沿科学重点研究计划,“冻土碳循环关键过程及其驱动机制”,项目主持人,在研;

[4] 中国科学院-北京大学率先合作团队,项目主持人,已结题;

[5] 优秀青年科学基金项目(31322011),“全球变化与陆地生态系统碳氮循环”,项目主持人,已结题;

[6] 国家自然科学基金面上项目(41371213),“北方草地土壤碳氮磷化学计量关系的动态变化”,项目主持人,已结题;

[7] 科技部重大科学研究计划课题(2014CB954001),“典型区域土壤有机碳组分及稳定性”,课题负责人,已结题。

代表性论文(#共同第一作者,*标记为通讯作者):

2019

[1] Qin SQ, Chen LY, Fang K, Zhang QW, Wang J, Liu FT, Yu JC, and Yang YH*, 2019. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Science Advances, 5: eaau1218.

[2] Chen LY #, Liu L#, Qin SQ, Yang GB, Fang K, Zhu B, Kuzyakov Y, Chen PD, Xu YP, and Yang YH*, 2019. Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nature Communications, doi: 10.1038/s41467-019-13119-z.

[3] Zhang DY, Peng YF, Li F, Yang GB, Wang J, Yu JC, Zhou GY, and Yang YH*, 2019. Trait identity and functional diversity co-drive response of ecosystem productivity to nitrogen enrichment. Journal of Ecology, 107: 2402-2414.

[4] Zhang QW, Yang GB, Song YT, Kou D, Wang GQ, Zhang DY, Qin SQ, Mao C, Feng XH and Yang YH*, 2019. Magnitude and drivers of potential methane oxidation and production across Tibetan alpine permafrost region. Environmental Science & Technology, 53: 14243-14252.

[5] Peng YF, Wang GQ, Li F, Yang GB, Fang K, Liu L, Qin SQ, Zhang DY, Zhou GY, Fang HJ, Liu XJ, Liu CY, and Yang YH*, 2019. Unimodal response of soil methane consumption to increasing nitrogen additions. Environmental Science & Technology, 53: 4150-4160.

[6] Li F, Peng YF, Chen LY, Yang GB, Abbott BW, Zhang DY, Fang K, Wang GQ, Wang J, Yu JC, Liu L, Zhang QW, Chen KL, Mohammat A, and Yang YH*, 2019. Warming alters surface soil organic matter composition despite unchanged carbon stocks in a Tibetan permafrost ecosystem. Functional Ecology, doi:10.1111/1365-2435.13489.

[7] Li F, Peng YF, Zhang DY, Yang GB, Fang K, Wang GQ, Wang J, Yu JC, Zhou GY, and Yang YH*, 2019. Leaf area rather than photosynthesis rate determines the responses of ecosystem productivity to experimental warming in an alpine steppe. Journal of Geophysical Research: Biogeosciences, 124: 2277-2287.

[8] Liu FT, Kou D, Abbott BW, Mao C, Chen YL, Chen LY, and Yang YH*, 2019. Disentangling the effects of climate, vegetation, soil and related substrate properties on the biodegradability of permafrost-derived dissolved organic carbon. Journal of Geophysical Research: Biogeosciences, 124: 3377-3389.

[9] Mao C, Kou D, Wang GQ, Peng YF, Yang GB, Liu FT, Zhang JB, and Yang YH*, 2019. Trajectory of topsoil nitrogen transformations along a thermo-erosion gully on the Tibetan Plateau. Journal of Geophysical Research: Biogeosciences, 124: 1342-1354.

[10] Fang K, Qin SQ, Chen LY, Zhang QW, and Yang YH*, 2019. Al/Fe mineral controls on soil organic carbon stock across Tibetan alpine grasslands. Journal of Geophysical Research: Biogeosciences, 124: 247-259.

[11] Chen YL, Kou D, Li F, Ding JZ, Yang GB, Fang K, and Yang YH*, 2019. Linkage of plant and abiotic properties to the abundance and activity of N-cycling microbial communities in Tibetan permafrost-affected regions. Plant and Soil, 434: 453-466.

[12] Kou D, Ding JZ, Li F, Wei N, Fang K, Yang GB, Zhang BB, Liu L, Qin SQ, Chen YL, Xia JY, and Yang YH*, 2019. Spatially-explicit estimate of soil nitrogen stock and its implication for land model across Tibetan alpine permafrost region. Science of the Total Environment, 650: 1795-1804.

2018

[13] Chen LY, Liu L, Mao C, Qin SQ, Wang J, Liu FT, Blagodatsky S, Yang GB, Zhang QW, Zhang DY, Yu JC, and Yang YH*, 2018. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nature Communications, doi: 10.1038/s41467-018-06232-y.

[14] Yang GB, Peng YF, Marushchak ME, Chen YL, Wang GQ, Li F, Zhang DY, Wang J, Yu JC, Liu L, Qin SQ, Kou D, and Yang YH*, 2018. Magnitude and pathways of increased nitrous oxide emissions from uplands following permafrost thaw. Environmental Science & Technology, 52: 9162-9169.

[15] Yang GB, Peng YF, Olefeldt D, Chen YL, Wang GQ, Li F, Zhang DY, Wang J, Yu JC, Liu L, Qin SQ, Sun TY, and Yang YH*, 2018. Changes in methane flux along a permafrost thaw sequence on the Tibetan Plateau. Environmental Science & Technology, 52:1244-1252.

[16] Kou D#, Ma WH#, Ding JZ, Zhang BB, Fang K, Hu HF, Yu JC, Wang T, Qin SQ, Zhao X, Fang JY, and Yang YH*, 2018. Dryland soils in northern China sequester carbon during the early-2000s warming hiatus period. Functional Ecology, 32: 1620-1630.

[17] Kou D, Peng YF, Wang GQ, Ding JZ, Chen YL, Yang GB, Fang K, Liu L, Zhang BB, Müller C, Zhang JB*, and Yang YH*, 2018. Diverse responses of belowground internal nitrogen cycling to increasing aridity. Soil Biology and Biochemistry, 116: 189-192.

[18] Liu FT#, Chen LY#, Abbott BW, Xu YP, Yang GB, Kou D, Qin SQ, Strauss J, Wang YH, Zhang BB, and Yang YH*,2018. Reduced quantity and quality of SOM along a thaw sequence on the Tibetan Plateau. Environmental Research Letters,doi: 10.1088/1748-9326/aae43b.

[19] Peng YF, Wang GQ, Li F, Zhou GY, Yang GB, Fang K, Liu L, Qin SQ, Zhang DY, and Yang YH*, 2018. Soil temperature dynamics modulate N2O flux response to multiple nitrogen additions in an alpine steppe. Journal of Geophysical Research: Biogeosciences, 123: 3308-3319.

[20] Liu FT, Chen LY, Zhang BB, Wang GQ, Qin SQ, and Yang YH*, 2018. Ultraviolet radiation rather than inorganic nitrogen increases dissolved organic carbon biodegradability in a typical thermos-erosion gully on the Tibetan Plateau. Science of the Total Environment, 627: 1276-1284.

2017

[21] Ding JZ, Chen LY, Hugelius G, Liu L, Li YN, Qin SQ, Zhang BB, Yang GB, Li F, Fang K, Chen YL, Peng YF, Zhao X, Ji CJ, He HL, Smith P, Fang JY, and Yang YH*, 2017. Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience, 10: 420-424.

[22] Li F#, Peng YF#, Natali SM, Chen KL, Han TF, Yang GB, Ding JZ, Zhang DY, Wang GQ, Wang J, Yu JC, Liu FT, and Yang YH*, 2017. Warming effects on permafrost ecosystem carbon fluxes associated with plant nutrients. Ecology, 98: 2851-2859.

[23] Peng YF, Li F, Zhou GY, Fang K, Zhang DY, Li CB, Yang GB, Wang GQ, Wang J, and Yang YH*, 2017. Linkage of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an apline steppe. Global Change Biology, 23: 5249-5259.

[24] Peng YF, Guo DL, and Yang YH*, 2017. Global patterns of root dynamics under nitrogen enrichment. Global Ecology and Biogeography, 26: 102-114.

[25] Chen YL, Deng Y, Ding JZ, Hu HW, Xu TL, Li F, Yang GB, and Yang YH*, 2017. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Molecular Ecology, 26: 6608-6620.

[26] Peng YF, Li F, Zhou GY, Fang K, Zhang DY, Li CB, Yang GB, Wang GQ, Wang J, Mohammat A, and Yang YH*, 2017. Nonlinear response of soil respiration to increasing nitrogen additions in a Tibetan alpine steppe. Environmental Research Letters, 12, 024018, doi: 10.1088/1748-9326/aa5ba6.

[27] Fang K, Kou D, Wang GQ, Chen LY, Ding JZ, Li F, Yang GB, Qin SQ, Liu L, Zhang QW, and Yang YH*, 2017. Decreased soil cation exchange capacity across northern China’s grasslands over the last three decades. Journal of Geophysical Research: Biogeosciences, 122: 3088-3097.

2016

[28] Chen LY, Liang JY, Qin SQ, Liu L, Fang K, Xu YP, Ding JZ, Li F, Luo YQ, and Yang YH*, 2016. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nature Communications, 7, 13046, doi: 10.1038/ncomms13046.

[29] Ding JZ, Li F, Yang GB, Chen LY, Zhang BB, Liu L, Fang K, Qin SQ, Chen YL, Peng YF, Ji CJ, He HL, Smith P, and Yang YH*, 2016. The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Global Change Biology, 22: 2688-2701.

[30] Chen YL, Chen LY, Peng YF, Ding JZ, Li F, Yang GB, Kou D, Liu L, Fang K, Zhang BB, Wang J, and Yang YH*, 2016. Linking microbial C:N:P stoichiometry to microbial community and abiotic factors along a 3500-km grassland transect on the Tibetan Plateau. Global Ecology and Biogeography, 25: 1416-1427.

[31] Ding JZ, Chen LY, Zhang BB, Liu L, Yang GB, Fang K, Chen YL, Li F, Kou D, Ji CJ, Luo YQ, and Yang YH*, 2016. Linking temperature sensitivity of soil CO2 release to substrate, environmental and microbial properties across alpine ecosystems. Global Biogeochemical Cycles, 30: 1310-1323.

[32] Chen YL, Ding JZ, Peng YF, Li F, Yang GB, Liu L, Qin SQ, Fang K, and Yang YH*, 2016. Patterns and drivers of soil microbial communities in Tibetan alpine and global terrestrial ecosystems. Journal of Biogeography, 43: 2027-2039.

[33] Chen LY#, Li P#, and Yang YH*, 2016. Dynamic patterns of nitrogen: phosphorus ratios in forest soils of China under changing environment. Journal of Geophysical Research: Biogeosciences, 121: 2410-2421.

2015

[34] Chen LY, Smith P, and Yang YH*, 2015. How has soil carbon stock changed over recent decades? Global Change Biology, 21: 3197-3199.

[35] Yang YH*, Ji CJ, Chen L, Ding JZ, Cheng X, and Robinson D. 2015. Edaphic rather than climatic controls over 13C enrichment between soil and vegetation in alpine grasslands on the Tibetan Plateau. Functional Ecology, 29: 839-848.

[36] Yang YH*, Li P, He HL, Zhao X, Datta A, Ma WH, Zhang Y, Liu XJ, Han WX, Wilson MC, and Fang JY, 2015. Long-term changes in soil pH across major forest ecosystems in China. Geophysical Research Letters, 42: 933-940.

2014

[37] Yang YH*, Li P, Ding JZ, Zhao X, Ma WH, Ji CJ, and Fang JY, 2014. Increased topsoil carbon stock across China’s forests. Global Change Biology, 20: 2687-2696.

[38] Yang YH*, Fang JY, Ji CJ, Datta A, Li P, Ma WH, Mohammat A, Shen HH, Hu HF, Knapp BO, and Smith P, 2014. Stoichiometric shifts in surface soils over broad geographical scales: evidence from China’s grasslands. Global Ecology and Biogeography, 23: 947-955.

[39] Xu B#, Yang YH#, Li P, Shen HH, and Fang JY*, 2014. Global patterns of ecosystem carbon flux in forests: A biometric data-based synthesis. Global Biogeochemical Cycles, 28, doi: 10.1002/2013GB004593.

2013

[40] Yang YH*, Ji CJ, Robinson D, Zhu B, Fang HJ, Shen HH, and Fang JY, 2013. Vegetation and soil 15N natural abundance in alpine grasslands on the Tibetan Plateau: patterns and implications. Ecosystems, 16: 1013-1024.

2012

[41] Yang YH*, Fang JY, Ji CJ, Ma WH, Mohammat A, Wang SF, Wang SP, Datta A, Robinson D, and Smith P, 2012. Widespread decreases in topsoil inorganic carbon stocks across China’s grasslands during 1980s-2000s. Global Change Biology, 18:3672-3680.

[42] Yang YH*, Ji CJ, Ma WH, Wang SF, Wang SP, Han WX, Mohammat A, Robinson D, and Smith P, 2012. Significant soil acidification across northern China’s grasslands during 1980s-2000s. Global Change Biology, 18: 2292-2300.

2011

[43] Yang YH*, Luo YQ, and Finzi A, 2011. Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytologist, 190: 977-989.

[44] Yang YH* and Luo YQ, 2011. Isometric biomass partitioning pattern in forest ecosystems: evidence from temporal observations during stand development. Journal of Ecology, 99: 431-437.

[45] Lu Meng#, Yang YH#, Luo YQ*, Fang CM, Zhou XH, Chen JK, Yang X, and Li B*, 2011. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytologist, 189: 1040-1050.

2010及以前

[46] Yang YH, Fang JY*, Ma WH, Smith P, Mohammat A, Wang SP, and Wang W, 2010. Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s. Global Change Biology, 16: 3036-3047.

[47] Yang YH*, Fang JY, Ji CJ, Ma WH, Su SS, and Tang ZY, 2010. Soil inorganic carbon stock in the Tibetan alpine grasslands. Global Biogeochemical Cycles, 24, GB4022, doi:10.1029/2010GB003804.

[48] Yang YH*, Fang JY, Fay PA, Bell JE, and Ji CJ, 2010. Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophysical Research Letters, 37, L15702, doi:10.1029/2010GL043920.

[49] Yang YH, Fang JY*, Ma WH, Guo DL, and Mohammat A, 2010. Large-scale pattern of biomass partitioning across China’s grasslands. Global Ecology and Biogeography, 19: 268-277.

[50] Yang YH, Fang JY*, Ma WH, and Wang W, 2008. Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophysical Research Letters, 35, L23710, doi: 10.1029/2008GL035408.