孙成奇

中国科学院力学研究所

浏览次数

60

收藏次数

0

接洽次数

0

  • 孙成奇
  • 研究员
  • 北京市海淀区北四环西路15号

简历:

2019.12 - 中国科学院力学研究所研究员

2013.12 - 2019.12 中国科学院力学研究所副研究员

2010.06 - 2013.12 中国科学院力学研究所助理研究员

2008.07 - 2010.06 高等教育出版社执行编辑

2003.09 - 2008.07 北京大学固体力学专业理学博士

1999.09 - 2003.07 大连理工大学应用数学系理学学士

研究领域:

材料和结构的疲劳与破坏

社会任职:

中国材料研究学会疲劳分会理事(2015.01 -)

获奖及荣誉:

1. 2018年获中国力学学会自然科学二等奖(项目:高强合金超高周疲劳裂纹萌生特征区机理与模型项目;获奖人:洪友士、孙成奇)

2. 2016年获SCI期刊“Fatigue FractEng Mater Struct”2012年度出版论文“Most Cited Papers Award”

3. 北京力学会第13届学术年会“青年优秀学术论文”

4. 北京大学第十届“学术十杰”

代表论著:

1. Song Qingyuan, Sun Chengqi*, 2020. Mechanism of crack initiation and early growth of high strength steels in very high cycle fatigue regime. Materials Science & Engineering A, 771: 138648.

2. Song Qingyuan, Li Yanqing, Wang Lei, Huang Ruxu, Sun Chengqi*, 2019. Effect of rise and fall time on dwell fatigue behavior of a high strength titanium alloy. Metals, 9: 914.

3. Li Chunming, Hu Zheng, Sun Chengqi*, Song Qingyuan, Zhang Wanhao. Probabilistic control volume method for evaluating the effects of notch size and loading type on fatigue life. ActaMechanicaSolidaSinica.https://doi.org/10.1007/s10338-019-00126-2

4. 李亚波, 宋清源, 杨凯, 陈一萍, 孙成奇*, 洪友士, 2019. 试样疲劳性能尺度效应的概率控制体积方法. 力学学报, 51(5): 1363–1371.

5. Sun Chengqi, Song Qingyuan, Zhou Lingling, Liu Jialong, Wang Yao, Wu Xiaolei, Wei Yujie*, 2019. The formation of discontinuous gradient regimes during crack initiation in high strength steels under very high cycle fatigue. International Journal of Fatigue, 124: 483–492.

6. Sun Chengqi*, Song Qingyuan, Zhou Lingling, Pan Xiangnan, 2019. Characteristic of interior crack initiation and early growth for high cycle and very high cycle fatigue of a martensitic stainless steel.Materials Science & Engineering A, 758: 112–120.

7. Wang Yao, Yuan Lichao, Zhang Shijia, Sun Chengqi, Wang Wenjing, Yang Guangxue, Li Qiang, Wei Yujie*, 2019. The influence of combined gradient structure with residual stress on crack-growth behavior in medium carbon steel. Engineering Fracture Mechanics, 209: 369–381.

8. Sun Chengqi*, Song Qingyuan, 2019. A method for evaluating the effects of specimen geometry and loading condition on fatigue life of metallic materials. MaterialsResearch Express,6:046536.

9. Hu Yuanpei, Sun chengqi, Hong Youshi*, 2018. Crack growth rates and microstructure feature of initiation region for very‐high‐cycle fatigue of a high‐strength steel. Fatigue & Fracture of Engineering Materials & Structures, 41: 1717–1732.

10. Hu Yuanpei, Sun Chengqi, XieJijia, Hong Youshi*, 2018. Effects of loading frequency and loading type on high-cycle and very-high-cycle fatigue of a high-strength steel. Materials, 11: 1456.

11. Sun Chengqi*, Song Qingyuan, 2018. A method for predicting the effects of specimen geometry and loading condition on fatigue strength. Metals, 8: 811.

12. Sun Chengqi*, Song Qingyuan, Hu Yuanpei, Wei Yujie, 2018. Effects of intermittent loading on fatigue life of a high strength steel in very high cycle fatigue regime. International Journal of Fatigue, 117: 9–12.

13. Li Yanqing, Song Qingyuan, FengShichao, Sun Chengqi*, 2018. Effects of loading frequency and specimen geometry on high cycle and very high cycle fatigue life of a high strength titanium alloy. Materials, 11: 1628.

14. Pan Xiangnan, Su Hang, Sun Chengqi, Hong Youshi*, 2018. The behavior of crack initiation and early growth in high-cycle and very-high-cycle fatigue regimes for a titanium alloy. International Journal of Fatigue,115: 67–78.

15. 洪友士*, 孙成奇, 刘小龙, 2018. 合金材料超高周疲劳的机理与模型综述. 力学进展, 48: 1–65.

16. HongYoushi*, SunChengqi, 2017. The nature and the mechanism of crack initiation and early growth for very-high-cycle fatigue of metallic materials – An overview.Theoretical and Applied Fracture Mechanics, 92: 331–350.

17. ZhangShijia, XieJijia, JiangQingqing, ZhangXiaole, SunChengqi, HongYoushi*, 2017. Fatigue crack growth behavior in gradient microstructure of hardened surface layer for an axle steel. Materials Science & Engineering A,700: 66–74.

18. Su Hang, LiuXiaolong, SunChengqi, HongYoushi*, 2017. Nanograin layer formation at crack initiation region for very-high-cycle fatigue of a Ti–6Al–4V alloy. Fatigue & Fracture of Engineering Materials & Structures, 40: 979–993.

19. 张吟*, 刘小明, 雷现奇, 孙成奇, 方新, 魏宇杰, 2017. 基于分层分压结构的新型潜水器耐压壳结构设. 力学学报, 49: 1231–1242.

20. SunChengqi, HongYoushi*, 2016. A promising method for the analysis of notch effect on fatigue strength: Strain energy density approach. Science China Technological Sciences, 59: 1617–1618.

21. Liu Xiaolong, SunChengqi, HongYoushi*, 2016. Faceted crack initiation characteristics for high-cycle and very high-cycle fatigue of a titanium alloy under different stress ratios. International Journal of Fatigue, 92: 434–441.

22. 刘小龙, 孙成奇, 周砚田,洪友士*, 2016. 微结构和应力比对Ti-6Al-4V高周和超高周疲劳行为的影响. 金属学报, 52: 923–930.

23. Jiang Qingqing, Sun Chengqi, Liu Xiaolong, Hong Youshi*, 2016. Very-high-cycle fatigue behavior of a structural steel with and without induced surface defects. International Journal of Fatigue, 93: 352–362.

24. Sun Chengqi, Zhang Xiaole, Liu Xiaolong, Hong Youshi*, 2016. Effects of specimen size on fatigue life of metallic materials in high-cycle and very-high-cycle fatigue regimes. Fatigue & Fracture of Engineering Materials & Structures, 39: 770–779.

25. Hong Youshi*, Liu Xiaolong, Lei Zhengqiang, Sun Chengqi, 2016. The formation mechanism of characteristic region at crack initiation for very-high-cycle fatigue of high-strength steels. International Journal of Fatigue, 89: 108–118.

26. Liu Xiaolong, Sun Chengqi, Hong Youshi*, 2016. Crack initiation characteristics and fatigue property of a high-strength steel in VHCF regime under different stress ratios. Fracture and Structural Integrity, 35: 88–97.

27. Matsunaga H.*, Sun Chengqi, Hong Youshi*, Murakami Y., 2015. Dominant factors for very-high-cycle fatigue of high-strength steels and a new design method for components. Fatigue & Fracture of Engineering Materials & Structures, 38: 1274–1284.

28. Sun Chengqi, Liu Xiaolong, Hong Youshi*, 2015. A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime. ActaMechanicaSinica, 31: 383–391.

29. Liu Xiaolong, Sun Chengqi, Hong Youshi*, 2015. Effects of stress ratio on high cycle and very-high-cycle fatigue behavior of a Ti-6Al-4V alloy. Materials Science & Engineering A,622: 228–235.

30. Sun Chengqi, Lei Zhengqiang, Hong Youshi*, 2014. Effects of stress ratio on crack growth rate and fatigue strength for high cycle and very-high-cycle fatigue of metallic materials. Mechanics of Materials, 69: 227–236.

31. Hong Youshi*, Lei Zhengqiang, Sun Chengqi, Zhao Aiguo, 2014. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels. International Journal of Fatigue, 58: 144–151.

32. Lei Zhengqiang, XieJijia, Sun Chengqi, Hong Youshi*, 2014. Effect of loading condition on very-high-cycle fatigue behavior and dominant variable analysis. SCIENCE CHINA Physics, Mechanics & Astronomy, 57: 74–82.

33. Sun Chengqi, Lei Zhengqiang, XieJijia, Hong Youshi*, 2013. Effects of inclusion size and stress ratio on fatigue strength for high-strength steels with fish-eye mode failure. International Journal of Fatigue, 48:19–27.

34. Sun Chengqi*, Liu Kaixin, Hong Youshi, 2013. Dynamic shell buckling behavior of multi-walled carbon nanotubes embedded in an elastic medium. SCIENCE CHINA Physics, Mechanics & Astronomy, 56: 483–490.

35. Sun Chengqi, XieJijia, Zhao Aiguo, Lei Zhengqiang, Hong Youshi*, 2012. A cumulative damage model for fatigue life estimation of high-strength steels in high-cycle and very-high-cycle fatigue regimes. Fatigue & Fracture of Engineering Materials & Structures, 35: 638–647.

36. Sun Chengqi*, Liu Kaixin, Hong Youshi, 2012. Dynamic buckling behavior of multi-walled carbon nanotubes subjected to step axial loading. ActaMechanicaSolidaSinica, 25(2): 117–125.

37. Sun Chengqi*, Liu Kaixin, Hong Youshi, 2012. Axisymmetric compressive buckling of multi-walled carbon nanotubes under different boundary conditions.ActaMechanicaSinica, 28(1): 83–90.

38. Zhao Aiguo, XieJijia, Sun Chengqi, Lei Zhengqiang, Hong Youshi*, 2012. Effects of strength level and loading frequency on very-high-cycle fatigue behavior for a bearing steel. International Journal of Fatigue,38: 46–56.

39. Lei Zhengqiang, Hong Youshi*, XieJijia, Sun Chengqi, Zhao Aiguo, 2012. Effects of inclusion size and location on very-high-cycle fatigue behavior for high strength steels. Materials Science & Engineering A, 558: 234–241.

40. Sun Chengqi, Hong Youshi*, 2012. Correlation of crack growth rate and stress ratio for fatigue damage containing very high cycle fatigue regime. Theoretical & Applied Mechanics Letters, 2: 031004.

41. Lei Zhengqiang, Zhao Aiguo, XieJijia, Sun Chengqi, Hong Youshi*, 2012. Very high cycle fatigue for GCr15 steel with smooth and hole-defect specimens. Theoretical & Applied Mechanics Letters, 2: 031003.

42. 洪友士*, 孙成奇. 高强钢超高周疲劳裂纹萌生和初始扩展的机理与模型. 第十六届全国疲劳与断裂学术会议(大会特邀报告), 中国厦门, 11月2-5日, 2012.

43. Zhao Aiguo, XieJijia, Sun Chengqi, Lei Zhengqiang, Hong Youshi*, 2011. Prediction of threshold value for FGA formation. Materials Science and Engineering A, 528: 6872–6877.

44. Sun Chengqi, Zhao Aiguo, Hong Youshi*, 2011. Correlation of crack initiation parameters with life estimation for very-high-cycle fatigue of high strength steels. Structural Longevity, 2(3): 157–168.

45. 庄表中*, 孙成奇, 吴立香, 2010. 魔术动力学分析之三——两个或多个铁环与铁链套结过程. 力学与实践, 32: 116–117.

46. Sun Chengqi, Liu Kaixin*, 2009. Vibration of multi-walled carbon nanotubes with initial axial force and radial pressure. Journal of Physics D: Applied Physics, 42: 175412.

47. Sun Chengqi, Liu Kaixin*, 2009. Dynamic buckling of double-walled carbon nanotubes under step axial load. ActaMechanicaSolidaSinica, 22(1): 27–36.

48. Sun Chengqi, Liu Kaixin*, 2009. Dynamic column buckling of multi-walled carbon nanotubes under axial impact load. Solid State Communications, 149: 429–433.

49. Sun Chengqi, Liu Kaixin*, 2008. Dynamic torsional buckling of a double-walled carbon nanotube embedded in an elastic medium. European Journal of Mechanics A/Solids, 27: 40–49.

50. Sun Chengqi, Liu Kaixin*, 2008. Combined torsional buckling of multi-walled carbon nanotubes coupling with axial loading and radial pressures. International Journal of Solids and Structures, 45: 2128–2139.

51. Sun Chengqi, Liu Kaixin*, 2008. Torsional buckling of multi-walled carbon nanotubes under combined axial and radial loadings. Journal of Physics D: Applied Physics, 41: 205404.

52. Sun Chengqi, Liu Kaixin*, Lu Guoxing, 2008. Dynamic torsional buckling of multi-walled carbon nanotubes embedded in an elastic medium. ActaMechanicaSinica, 24: 541–547.

53. Sun Chengqi, Liu Kaixin*, 2007. Vibration of multi-walled carbon nanotubes with initial axial loading. Solid State Communications, 143: 202–207.

54. Sun Chengqi, Liu Kaixin*, 2007. Combined torsional buckling of multi-walled carbon nanotubes coupling with radial pressures. Journal of Physics D: Applied Physics, 40: 4027–4033.

55. Sun Chengqi, Liu Kaixin*, Tanimura S., 2007. Investigation of solenoidal condition for solving wave propagation problems by Lamé’s decomposition. Multidiscipline Modeling in Materials and Structures, 3(2): 247–256.

授权专利:

1. 洪友士, 孙成奇, 刘小龙. 预测试样尺寸对疲劳寿命影响的方法. ZL 2016 1 0059873.9. 2018.02.16

2. 张诗佳, 谢季佳, 孙成奇, 洪友士. 一种表面强化构件疲劳裂纹扩展速率的测定方法. ZL201510437043.0. 2018.01.19

3. 洪友士, 姜青青, 孙成奇, 谢季佳. 一种用于疲劳强度测试的并行分支升降法. ZL201610237687.X. 2018.08.10

测试标准:

北京航空材料研究院标准. 金属材料超高周振动疲劳试验方法. Q/6S 3702-2019. 2019.09.18(起草单位:北京航空材料研究院、中国科学院力学研究所)

承担科研项目情况:

1. 国家自然科学基金重大研究计划培育项目,压气机叶片用TC17钛合金高温超高周疲劳行为与缺陷敏感性研究(91860112),2019.01-2021.12,72万元,在研。

2. 国家重点研发计划“深海耐压结构体、材料耐压特性及评估技术研究”项目子课题,蠕变-疲劳下钛合金耐压结构寿命评估技术研究(2017YFC0305501-2),2017.07-2020.12,90万元,在研。

3. 国防科工局“XXX设计技术研究与试验验证”项目子课题,材料疲劳性能与寿命预测模型,2018.01-2020.12,85万元,在研。

4. 中国国家铁路集团有限公司“动车组S38C/EA4T材质空心车轴修程修制优化工作方案”中多个任务,2019.08-2020.12,在研。

5. 国家重点研发计划“全海深载人潜水器总体设计、集成与海试”项目子课题,全海深耐压结构的疲劳破坏机制和寿命评估技术研究(2016YFC0300603-06),2016.07-2018.06,97万元,已结题。

6. 国家自然科学基金青年科学基金项目,高强钛合金超高周疲劳的微结构尺度效应实验研究与理论分析(11202210),2013.01-2015.12,30万元,已结题。

7. 中车青岛四方技术服务项目,G20Mn5QT轴箱体材料疲劳性能试验,2018.07-2018.12,39万元,已结题。

8. 清华大学技术服务项目,增材制造Ti-6Al-4V超高周疲劳性能试验研究,2019.09-2020.03,31.38万元,已结题。