研究方向:
代数群、量子群
主要成果:
对仿射A型外尔群证明了Lusztig关于基环的猜想。 确定了Deligne-Langlands关于仿射赫克代数的猜想成立的充要条件。 与Lusztig合作发现了仿射外尔群的每个双边胞腔含有唯一的典范左胞腔。 与谷崎合作证明了仿射A型赫克代数的一个代数滤过和一个几何滤过一致。 对单位根处的量子群和特征p的代数闭域上的代数群,清楚具体地实现不可约表示。 对量子群的基进行了系统的研究。这包括与Chari合作构造了量子群的单项基,计算了某些典范基,对根向量及其交换公式的研究等。
代表论著:(与G. Lusztig合作) Canonical left cells in affine Weyl groups, Adv. in Math. 72 (1988), 284-288. Finite dimensional modules of some quantum groups over Fp(v), J. Rein. Angew. Math. 410 (1990), 109-115. The based ring of the lowest two-sided cell of an affine Weyl group, II, Ann. Sci. Éc. Norm. Sup. 27 (1994), 47-61. Root vectors in quantum groups, Comm. Math. Helv. 69 (1994), 612-639. REPRESENTATIONS OF AFFINE HECKE ALGEBRAS, Lecture Notes in Mathematics 1587, Springer-Verlag,1994,Germany. Irreducible modules of quantized enveloping algebras at roots of 1, Publ. RIMS. Kyoto Univ. 32 (1996), 235-276. (与V. Chari合作) Monomial bases of quantized enveloping algebras, Contemp. Math. 248, AMS Providence , RI , 1999, 69-81. THE BASED RING OF TWO-SIDED CELLS OF AFFINE WEYL GROUPS OF Ãn-1, Mem. of AMS, Vol. 157, No. 749, American Mathematical Society, 2002,USA (与T. Tanisaki合作)Kazhdan-Lusztig basis and a geometric filtration of an affine Hecke algebra,Nagoya Math. J. 182 (2006), 285-311. Representations of affine Hecke algebras and based rings of affine Weyl groups , J. Amer. Math. Soc. 20 (2007), 211-217.
|