- 谢旗
- 研究员

谢旗,博士,研究员,博士生导师 1987年中山大学学士。1990年广东省微生物研究所硕士。1994年西班牙Universidad de Madrid大学博士。1995年至1998年分别在Universidad de Madrid 及美国Rockefeller University继续博士后工作。1998年被聘为新加坡国立大学分子农业生物学学院Research Fellow,后任该学院植物细胞研究室执行主任。回国前任新加坡国立大学Temasek Life Sciences Laboratory分子与细胞研究室执行主任(Acting Principal Investigator)。2002年起任中山大学生命科学学院长江学者特聘教授。2003年国家杰出青年科学基金获得者。2004年中国科学院'百人计划'入选者。2008年获经国务院批准享受政府特殊津贴专家。现担任国家重大科学研究计划--植物蛋白修饰和降解研究项目的首席科学家。
主要研究内容:1.泛素蛋白酶体途径介导的蛋白修饰机制 泛素蛋白修饰(Ubiquitination)是真核生物特有的蛋白翻译后修饰,它直接地调节生命活动中有关时空特异变化的生物学功能。虽然已在泛素蛋白酶体系统调控植物正常生长发育以及植物对环境响应研究方面取得了一些进展,但对其详细的信号传导机理尚待进一步探讨。尤其是在植物与环境的相互作用领域,关于蛋白泛素修饰参与植物抵抗逆境胁迫的作用机制的研究还处于起步阶段。基于双子叶植物拟南芥及单子叶植物水稻的基因组学和遗传学较其它植物研究得更为深入,我们利用拟南芥和水稻为模式植物,着重于以下几个方面的研究:(1)从功能基因组学方面研究拟南芥中不同E2家族成员的共性及特异性,并且建立适合各种调控途径的体内外反应检测体系,研究E2与E3的特异性结合及生物学功能。(2)研究拟南芥和水稻中单亚基类泛素蛋白连接酶(E3)的两大重要家族(RING finger及 U-box家族)的功能,采取点面结合的方式,利用基因组学、生物化学及遗传学手段阐明该类蛋白的功能网络、作用对象及机制。(3)试图阐明泛素蛋白降解,特别是ERAD途径对植物生长发育的调控机制以及在植物逆境胁迫中的调控机制。
2. 植物与生物胁迫因子的相互作用及对非生物胁迫因子的响应及信号传导 我们分别利用正向和反向遗传学的方法,以模式植物拟南芥(Arabidopsis)为材料来研究植物对盐、干旱、冷等非生物胁迫的响应机制及信号传导途径,同时以模式植物小盐芥(Thellungiella salsuginea)来研究植物耐盐的分子机理。生长在华东地区海滩盐土上的本土植物种类小盐芥,符合作为遗传研究模式系统的各种标准,它的基因组大小接近拟南芥的两倍,但相对于拟南芥最高只能在75mM NaCl的浓度下完成其生活史,小盐芥则能在超过300mM NaCl浓度下完成生活史。因此,用小盐芥作为材料,通过系统的遗传学分析将有可能发现耐盐基因,揭示植物耐盐的分子机制。通过导入耐盐基因来获得抗逆的转基因经济作物,将扩大其种植范围和提高作物产量。
以双生病毒(Geminivirus)与植物的相互作用为模式研究植物与生物胁迫因子的相互作用。双生病毒是一组具有双生颗粒形态的单链环状植物DNA病毒。对双生病毒基因组结构、遗传表达机制、复制和转录调控机制及病毒与寄主的相互识别等方面进行深入研究,有助于揭示病毒与寄主植物相互间的作用方式。我们以甜菜曲顶卷叶病毒(Beet Curly Top Virus, BCTV)等双生病毒及模式植物拟南芥为材料, 结合基因组学、酵母双杂交系统及DNA芯片等技术来进行研究,目标是应用一种新的研究植物与病毒相互作用的方法研究植物与生物胁迫因子的相互作用,为防治由双生病毒引起的植物病害提出新的技术方案。
3. 高生物量植物--甜高粱的分子设计 甜高粱(Sweet Sorghum,Sorghum saccharatum)是耐旱、耐涝、耐盐碱等抗逆性强的光合效率极高的C4作物。茎秆中汁液含糖量与甘蔗相当。高生物量的甜高粱是高价值畜牧饲料、能源乙醇、造纸纤维和生物合成的基质。结合高通量基因组生物学技术和分子遗传学手段研究甜高粱的耐逆和高生物量分子机制,通过分子设计培育更适合边际土地生长的高生物量及抗逆性强的新品种。
主要论著目录Xie, P., Shi, J., Tang, S., Chen, C, Khan, A., Zhang, F., Xiong, Y., Li, C., He, W., Wang, G., Lei, F., Wu, Y., Xie Q. (2019) Control of bird feeding behavior by Tannin1 through modulating the biosynthesis of polyphenols and fatty acid-derived volatiles in sorghum. Mol Plant. 12, 1315-1324Pan, W., Wu, Y., Xie, Q. (2019) Regulation of ubiquitination is central to the phosphate starvation response.Trends Plant Sci.24(8):755-769. 5.Xie Q., Xu Z. (2019) Sustainable agriculture: From sweet sorghum planting and ensiling to ruminant feeding. Mol Plant. 12(5):603-606.Han, J., Yang, X., Wang, Q., Tang, L., Yu, F., Huang, X., Wang, Y., Liu, J., Xie, Q. (2019) The β5 subunit is essential for intact 26S proteasome assembly to specifically promote plant autotrophic growth under salt stress. New Phytol.221(3):1359-1368Li, Y., Li, Y., Liu, Y., Wu, Y., Xie, Q. (2018) The sHSP22 heat shock protein requires the ABI1 protein phosphatase to modulate polar auxin transport and downstream responses. Plant Physiol. 176 (3):2406-2425.Tang, S., Wang, Z., Chen, C., Xie, P., Xie, Q. (2018) The prospect of sweet sorghum as the source for high biomass crop. J Agric Sci Bot. 2(3): 5-11Chen, H., Ma, B., Zhou, Y., He, S., Tang, S., Lu, X., Xie, Q., Chen, S., Zhang, J. (2018) E3 ubiquitin ligase SOR1 regulates ethylene response in rice root by modulating stability of Aux/IAA protein. Proc Natl Acad Sci U S A. 115(17):4513-4518.Wang, J., Grubb, L., Wang, J., Liang, X., Li, L., Gao, C., Ma, M., Feng, F., Li, M., Li, L., Zhang, X., Yu, F., Xie, Q., Chen, S., Zipfel, C., Monaghan, J. and Zhou, J.*(2018) A regulatory module controlling homeostasis of a plant immune kinase. Molecular Cell 69(3):493-504Yu, F., Xie, Q. (2017) Non-26S Proteasome Endomembrane Trafficking Pathways in ABA Signaling. Trends Plant Sci. 22(11):976-985.Zhao, L., Li, Y., Xie, Q., Wu, Y. (2017) Loss of CDKC; 2 increases both cell division and drought tolerance in Arabidopsis thaliana. Plant J. 91(5):816-828.Chen, Q., Liu, R., Wang, Q., Xie, Q. (2017) ERAD Tuning of the HRD1 Complex Component AtOS9 Is Modulated by an ER-Bound E2, UBC32. Mol Plant. 10(6):891-894.Yu, F., Lou L., Tian, M., Li, Q., Ding, Y., Cao, X., Wu, Y., Belda-Palazon, B., Rodriguez, P., Yang, S. and Xie, Q. (2016) ESCRT-I component VPS23A affects ABA signaling by recognizing ABA receptors for endosomal degradation. Mol. Plant.9: 570–1582.Chen, Q., Zhong, Y., Wu, Y., Liu, L., Wang, P., Liu, R., Cui, F., Li, Q., Yang, X., Fang, S. and Xie, Q. (2016) HRD1-mediated ERAD tuning of ER-bound E2 is conserved between plants and mammals. Nature Plants. 2:16094Shu, K., Liu, X., Xie, Q.and He, Z. (2016) Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination.Mol. Plant. 9:34-45.Shu, K., Chen, Q., Wu, Y., Liu, R., Zhang, H., Wang, P., Li, Y., Wang, S., Tang, S., Liu, C., Yang, W., Cao, X., Serino, G. and Xie, Q. (2016) ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels.Plant J. 85:348-361.Yu, F., Wu, Y. and Xie, Q. (2016) Ubiquitin-Proteasome System in ABA Signaling: From Perception to Action. Mol. Plant 9(1):21-33.Yan, L., Wei, S., Wu, Y., Hu, R., Li, H., Yang, W. and Xie, Q. (2015) High efficiency genome editing in Arabidopsis using Yao promoter-driven CRISPR/Cas9 system. Mol. Plant 8:1820-1823Shu, K., Chen, Q., Wu, Y., Liu, R., Zhang, H., Wang, S., Tang, S., Yang, W. and Xie, Q. (2015) ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription. J Exp. Bot. 67:195-205Yu, F., Wu, Y. and Xie, Q. (2015) Precise protein post-translational modifications modulate ABI5 activity. Trends Plant Sci. 20(9): 569-575.Zhang, H., Wu, Y., Lou, L., Tian, M., Ning, Y., Shu, K. andXie, Q. (2015) The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. Plant Cell 27: 214-27.Tian, M., Lou, L., Yu, F., Zhao, Q., Zhang, H., Wu, Y., Tang, S., Xia, R., Zhu, B., Serino, G. and Xie, Q. (2015) The RING finger E3 ligase STRF1 is involved in membrane trafficking and modulates salt-stress response in Arabidopsis thaliana. Plant J. 82: 81-92Wu, Y., Li, Y., Liu, Y. and Xie, Q. (2015) Cautionary Notes on the Usage of abi1-2 and abi1-3 Mutants of Arabidopsis ABI1 for Functional Studies. Mol. Plant 8: p335-338Ding, Y., Li, H., Zhang, X., Xie, Q., Gong, Z. and Yang, S. (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev. Cell. 32: 278-89.Kong, L., Cheng, J., Zhu, Y., Ding, Y., Meng, J., Chen, Z., Xie, Q., Guo, Y., Li, J., Yang, S. and Gong, Z. (2015) Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases. Nat Commun. 6:8630. DOI: 10.1038/ncomms9630Shu, K., Zhang, H., Wang, S., Chen, M., Wu, Y., Tang, S., Liu, C., Feng, Y., Cao, X. and Xie, Q. (2013) ABI4 Regulates Primary Seed Dormancy by Regulating the Biogenesis of Abscisic Acid and Gibberellins in Arabidopsis. PLoS Genet. 9: e1003577. Zhao, Q., Tian, M., Li, Q., Cui, F., Liu, L., Yin, B. and Xie, Q. (2013) A plant-specific in vitro ubiquitination analysis system. Plant J. 74: 524-533.Hu, X., Qian, Q., Xu, T., Zhang, Y., Dong, G., Gao, T., Xie, Q. and Xue, Y. (2013) The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate Brassinosteroid-mediated growth in rice. PLoS Genet.9: e1003391.Liu, Z., Wu, Y., Yang, F., Zhang, Y., Chen, S., Xie, Q., Tian X and Zhou JM. (2013) BIK1 interacts with PEPRs to mediate ethylene-induced immunity. Proc. Natl. Acad. Sci. USA 110: 6205-6210.Yan, J., Li, H., Li, S., Yao, R., Deng, H., Xie, Q. and Xie, D. (2013) The Arabidopsis F-box protein CORONATINE INSENSITIVE1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway. Plant Cell 25: 486-498.Wu, H., Zhang, Z., Wang, J., Oh, D., Dassanayake, M., Liu, B., Huang, Q., Sun, H., Xia, R., Wu, Y., … Chu, C., Chen, S., Bohnert, H., Zhu, J., Wang, X. and Xie, Q. (2012) Insights into salt tolerance from the genome ofThellungiella salsuginea. Proc. Natl. Acad. Sci. USA 24:12219-12224.Cui, F., Liu, L., Zhao, Q., Zhang, Z., Li, Q., Lin, B., Wu, Y., Tang, S. and Xie, Q. (2012) Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell24:233-244.Zhang, Z., Chen, H., Huang, X., Xia, R., Zhao, Q., Lai, J. Teng, K., Li, Y., Liang, L., Du, Q., Zhou, X., Guo, H. and Xie, Q. (2011) BSCTV C2 Attenuates the Degradation of SAMDC1 to Suppress DNA Methylation-Mediated Gene Silencing in Arabidopsis. Plant Cell 23: 273-288.Liu, L., Cui, F. Li, Q., Yin, B., Zhang, H., Lin, B., Wu, Y., Xia, R., Tang, S. and Xie, Q. (2011) The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance. Cell Res. 21:957-969.Ning, Y., Jantasuriyarat, C., Zhao, Q., Zhang, H., Chen, S., Liu, J., Liu, L., Tang, S., Park, C., Wang, X., Liu, X., Dai, L., Xie, Q. and Wang, G. (2011) The SINA E3 Ligase OsDIS1 Negatively Regulates Drought Response in Rice. Plant Physiol. 157:242-255.Liu, Y., Wu, Y., Huang, X., Sun, J. andXie, Q. (2011) AtPUB19, a U-Box E3 Ubiquitin Ligase, Negatively Regulates Abscisic Acid and Drought Responses in Arabidopsis thaliana.Mol. Plant4: 938-946.Cui, Y., Li, X., Chen Q., He, X., Yang, Q., Zhang, A., Yu, X., Chen, H., Liu, N., Xie, Q., Yang, W., Zuo J., Palme, K. and Li, W. (2010) BLOS1, a putative BLOC-1 subunit, interacts with SNX1 and modulates root growth in Arabidopsis. Journal of Cell Science123:3727-3733.Luo, X., Lin, W., Zhu, S., Zhu, J., Sun, Y., Fan, X., Cheng, M., Hao, Y., Oh, E., Tian, M., Liu, L., Zhang, M., Xie, Q., Chong, K. and Wang, Z. (2010) Integration of Light- and Brassinosteroid-Signaling Pathways by a GATA Transcription Factor in Arabidopsis. Developmental Cell19: 872-883.Chen, H., Zhang, Z., Teng, K., Lai, J., Zhang, Y., Huang, Y., Li, Y., Liang, L., Wang, Y. , Chu, C., Guo, H. and Xie, Q. (2010) Up-regulation of LSB1/GDU3 impacts geminivirus infection by activating the salicylic acid pathway. Plant J. 62: 12-23. Liu, L., Zhang, Y., Tang, S., Zhao, Q., Zhang, Z., Zhang, H., Dong, L., Guo, H. and Xie, Q. (2010) An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. Plant J. 61: 893-903.Bu, Q., Li, H., Zhao, Q., Jiang, H., Zhai, Q., Zhang, J., Wu, X., Sun, J., Xie, Q., Wang, D. and Li, C. (2009) The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development. Plant Physiol. 150: 463-481. Huang, L., Yang, S., Zhang, S., Liu, M., Lai, J., Qi, Y., Shi, S., Wang, J., Wang, Y., Xie, Q. and Yang, C. (2009) The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root. Plant J. 60:666-678.Lai, J., Chen, H., Teng, K., Zhao, Q., Zhang, Z., Li, Y., Liang, L., Xia, R., Wu, Y., Guo, H. and Xie, Q. (2009) RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. Plant J. 57: 905-917. Yu, J., Rubio, V., Lee, N., Bai, S., Lee, S., Kim, S., Liu, L., Zhang, Y., Irigoyen, M., Sullivan, J., Zhang, Y., Lee, I., Xie, Q., Paek, N. and Deng, X. (2008) COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol. Cell 32: 617-630. Liu, J., Zhang, Y., Qin, G., Tsuge, T., Sakaguchi, N., Luo, G., Sun, K., Shi, D., Aki, S., Zheng, N., Aoyama, T., Oka, A., Yang, W., Umeda, M., Xie, Q., Gu, H. and Qu, L.J. (2008) Targeted degradation of the cyclin-dependent kinase inhibitor ICK4/KRP6 by RING-type E3 ligases is essential for mitotic cell cycle progression during Arabidopsis gametogenesis. Plant Cell 20:1538-1554. Du, Q., Duan, C., Zhang, Z., Fang, Y., Fang, R., Xie, Q. and Guo, H. (2007) DCL4 targets Cucumber mosaic virus satellite RNA at novel secondary structures. Journal of Virology. 81:9142-9151. Zhang, Y., Yang, C., Li, Y., Zheng, N., Chen, H., Zhao, Q., Gao, T., Guo, H. and Xie, Q. (2007) SDIR1 Is a RING Finger E3 Ligase That Positively Regulates Stress-Responsive Abscisic Acid Signaling in Arabidopsis. Plant Cell 19: 1912-1929. Chu, Z., Chen, H., Zhang, Y., Zhang, Z., Zheng, N., Yin, B., Yan, H., Zhu, L., Zhao, X., Yuan, M., Zhang, X. and Xie, Q. (2007) Knockout of the AtCESA2 gene affects microtubule orientation and causes abnormal cell expansion in Arabidopsis. Plant Physiol. 143: 213-224. Zou, J., Zhang, S., Zhang, W., Li, G., Chen, Z., Zhai, W., Zhao, X., Pan, X., Xie, Q. and Zhu, L. (2006) The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J. 48: 687-698. Desvoyes, B., Ramirez-Parra, E., Xie, Q., Chua, N. and Gutierrez, C. (2006) Cell type-specific role of the retinoblastoma/E2F pathway during Arabidopsis leaf development. Plant Physiol. 140: 67-80. Dong, C., Agarwal, M., Zhang, Y., Xie, Q. and Zhu, J. (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc. Natl. Acad. Sci. USA103: 8281-8286. Guo, H., Xie, Q., Fei, J. and Chua, N. (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 17:1376-1386. Zeng, L., Qu, S., Bordeos, A., Yang, C., Baraoidan, M., Yan, H., Xie, Q., Nahm, B., Leung, H. and Wang, G. (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795-2808. Guo, H., Fei, J., Xie, Q. and Chua, N. (2003) A chemical-regulated inducible RNAi system in plants. Plant J. 34: 383-392. Hu, Y., Xie, Q. and Chua, N. (2003) The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15: 1951-1961.Xie, Q., Guo, H., Dallman, G., Fang, S., Weissman, A. and Chua, N. (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419:167-170. (Covery story)Xie, Q., Frugis, G., Colgan, D. and Chua, N. (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14:3024-3036.Xie, Q., Sanz-Burgos, A.P., Guo, H., Garcia, J. and Gutierrez, C. (1999) GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol. Biol. 39: 647-656. Ramirez-Parra, E., Xie, Q., Boniotti, M. and Gutierrez, C. (1999) The cloning of plant E2F, a retinoblastoma-binding protein, reveals unique and conserved features with animal G(1)/S regulators. Nucleic Acids Res. 27: 3527-3533.Xie, Q., Sanz-Burgos, A., Hannon, G. and Gutierrez, C. (1996) Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins. EMBO J. 15: 4900-4908.Xie, Q., Suarez-Lopez, P. and Gutierrez, C. (1995) Identification and analysis of a retinoblastoma binding motif in the replication protein of a plant DNA virus: requirement for efficient viral DNA replication. EMBO J. 14: 4073-4082.著作Chen, Q., Yang, X., and Xie, Q. Approaches to determine protein ubiquitylation residue types. Methods Mol Biol., (2016) Humana Press, 3-10.Wu, Y., Yu, F. and Xie, Q. Protein Ubiquitination and Sumoylation in ABA Signaling. Abscisic Acid: Metabolism, Transport and Signaling. Zhang D. (2014) p177-190.Liu, L., Zhao, Q. and Xie, Q. In Vivo Ubiquitination Assay by Agroinfiltration. Plant Signalling Networks: Methods and Protocols. Wang Z.Y. and Yang Z.B. (Ed.), (2012) Humana Press, 153-162.Zhao, Q., Liu, L. and Xie, Q. In Vitro Protein Ubiquitination Assay. Plant Signalling Networks: Methods and Protocols. Wang Z.Y. and Yang Z.B. (Ed.), (2012) Humana Press, 163-172.Zhang, H., Li, G., Zhang, Y., Xia, R., Wang, J. and Xie, Q. An Efficient Method to Screen for Salt Tolerance Genes in Salt cress. Plants and Environment. Hemanth K.N. Vasanthaiah and Devaiah Kambiranda (Ed.), (2011) INTECH Press, 242-247.