赫然

中国科学院自动化研究所

浏览次数

195

收藏次数

0

接洽次数

0

  • 赫然
  • 研究员

简历:

赫然,研究员,2001年在大连理工大学获计算机科学学士学位,2004年在大连理工大学获计算机软件与理论硕士学位,2009年在中国科学院自动化研究所获模式识别与智能系统专业博士学位。2010年加入模式识别国家重点实验室工作。主要研究方向是生物特征识别、机器学习理论和信息论学习理论。在权威国际期刊IEEE TPAMI、TIP、TNNLS、TKDE、MIT NECO,权威国际会议AAAI, CVPR等上发表论文60余篇。现担任Elsevier国际期刊Neurocomputing和IET image processing的编委。

研究领域:

生物特征识别、模式识别、机器学习、信息论

学术任职:

IET Image Processing编委 (2012-)
北京图象图形学学会理事 (2012-)
Neurocomputing编委 (2011-)

学术成就:

部分学术论文 
(1) Learning predictable binary codes for face indexing, Pattern Recognition, 2015
(2) Robust Subspace Clustering With Complex Noise, IEEE Trans. Image Processing, 2015 
(3) Cross-Modal Subspace Learning via Pairwise Constraints, IEEE Trans. Image Processing, 2015
(4) Half-quadratic based Iterative Minimization for Robust Sparse Representation, IEEE Trans. Pattern Analysis and Machine Intelligence (TPAMI), 2014
(5) Recovery of Corrupted Low-rank Matrix by Implicit Regularizers, IEEE Trans. Pattern Analysis and Machine Intelligence (TPAMI), 2014
(6) Two-stage Nonnegative Sparse Representation for Large-scale Face Recognition, IEEE Trans. Neural Network and Learning System (TNNLS), 2013
(7) L21 Regularized Correntropy for Robust Feature Selection, IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2012
(8) Maximum Correntropy Criterion for Robust Face Recognition, IEEE Trans. Pattern Analysis and Machine Intelligence (TPAMI), 2011
(9) A Regularized Correntropy Framework for Robust Pattern Recognition, MIT Neural Computation (NECO), 2011
(10) Robust Principal Component Analysis Based on Maximum Correntropy Criterion, IEEE Trans. Image Processing, 2011
(11) Recovery of Corrupted Low-Rank Matrices via Half-Quadratic based Nonconvex Minimization, IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2011(12) Nonnegative Sparse Coding for Discriminative Semi-supervised Learning, IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2011
(13) Two-stage Sparse Representation for Robust Recognition on Large-scale Database, In Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI), 2010 

部分著作 
( 1 ) 基于信息理论的鲁棒模式识别, Robust recognition via information theoretic learning, Springer