左建儒

中国科学院遗传与发育生物学研究所

浏览次数

32

收藏次数

0

接洽次数

0

  • 左建儒
  • 研究员

左建儒,研究员,博士生导师 1984年7月毕业于西南师范学院生物系,获学士学位。1988年7月获中国科学院遗传所硕士学位。1994年12月获美国迈阿密大学博士学位,1995年进入美国洛克菲勒大学进行博士后研究。2000年入选中国科学院“百人计划”,并在结题验收中获得优秀。2001年国家杰出青年科学基金获得者。植物基因组学国家重点实验室主任。以通讯作者身份在Molecular Cell、Nature Communications、Plant Cell、Plant Physiology、Molecular Plant等国际主流学术期刊发表研究论文30余篇。担任Molecular Plant、Journal of Genetics & Genomics、Physiologia Plantarum、《植物学报》等学术刊物编委或副主编 。

我们实验室的主要研究方向是一氧化氮与细胞分裂素信号转导、作物氮营养的调控机理。 1. 一氧化氮信号通路调控植物生长发育与胁迫反应的分子机理 一氧化氮(nitric oxide, NO)是在有机体中广泛存在的一类信号分子,调控了众多生物学过程。作为信号分子,NO的生理作用主要通过取代蛋白质中特异半胱氨酸残基中巯基基团的氢离子,形成共价键相连的亚硝基硫醇(S-NO),从而调控蛋白质的生物学活性而实现。这一过程被称为S-亚硝基化(S-nitrosylation),是一种基于氧化还原、可逆的蛋白质翻译后修饰机制,参与了调控几乎所有信号通路。目前对S-亚硝基化的生化和遗传调控机制了解甚少。我们将通过遗传学、生物化学、蛋白组学、细胞生物学等手段系统研究NO调控植物生长发育与胁迫反应的分子机理。 2.调控作物氮营养的分子机理 氮元素是所有生物的必需营养元素,而植物是动物氮元素的唯一来源。非豆科植物主要通过吸收土壤中的无机氮,转化为氨基酸等形式的有机氮(即氮元素的同化过程),而被植物利用。氮营养是作物产量形成的核心因素。提高氮利用效率不仅是作物高产的重要手段,也是农业高效、环境保护的重要因素。虽然氮营养代谢的主要生化通路已经被阐明,但其调控机理知之甚少。我们将通过遗传学、生物化学、植物生理学、组学等手段研究水稻等作物氮代谢调控的遗传基础和分子机理。 3.细胞分裂素的信号转导 细胞分裂素在植物生长和发育过程中通过调节细胞分裂和细胞分化起着非常重要的作用。细胞分裂素信号转导是由一个双元组分系统(two-component system)介导的。在模式植物拟南芥中,细胞分裂素信号通路的主要组分包括细胞分裂素受体(AHK2, 3, 4; AHK4又名CRE1或WOL)、磷酸转运蛋白(AHP)以及下游的反应调节因子(ARR)等。我们将利用系统探索、解析细胞分裂素信号通路调控植物生长发育的分子与生化机理,重点关注细胞分裂素受体活性调控的分子机理。博士后和客座研究生招聘信息: 本实验室长期招收博士后和客座研究生,欢迎申请。实验室成员:郭红艳,助理研究员王 弯,助理工程师博士后:詹 妮、王 青、郭 猛、陈立超博士研究生:马晓辉、孙淑豪、粘金沓硕博连读研究生:李翰文、封天鹏、王丹凤、吴 蓉、王石平、严春林、尹艳艳、林慧芳、龚心如毕业研究生以及现就职单位(未注明者均为博士学位获得者):孙姝兰(2004):华南师范大学纪振动(硕士,2004)张素芝(2005):四川农业大学孙加强(2005):中国农科院安丰英(2005):北京大学郑丙莲(2006):复旦大学师丽华(2006):The Children's Hospital of Philadelphia冯海忠(2006):上海交通大学陈瑞强(2007):North Carolina State University李 超(2008):华东师范大学王兴春(2008):山西农业大学董海丽(2008):Iowa State University牟金叶(2008):中国科学院遗传发育所邓 岩(2009):薛 丽(2010):University of Cologne任 勃(2010):Purdue University陈庆国(2010):Cornell University谭河林(2011):南京农业大学谢庆军(2011):华南农业大学关春梅(2011):中国科学院遗传发育所腾 冲(2011):University of Delaware洪苏蕾(2012)王 春(2012):中国水稻研究所郑华坤(2012):福建农林科技大学冯 健(2012):John Innes Centre赵文明(2013):李彦莎(2013):中国科学院上海植物逆境生物学研究中心胡济梁(2013):广州中医药大学陈梦竹(2013):深圳大学白蛟腾(2014):河北师范大学景宏伟(2015):Washington University in St. Louis杨晓璐(2015):Washington University in St. Louis陈立超(2015):中国科学院遗传发育所杨焕杰(2015):University of Zurich杜 虎(2016):广东省农科院 欢迎有志于植物分子遗传学研究的青年学子报考研究生。请参阅我们实验室对研究生的具体要求(Notes to Graduate Students)。回国后发表的主要论文:1. Zhan, N., Wang, C., Chen, L., Yang, H., Feng, J., Gong, X., Ren, B., Wu, R., Mu, J., Li, Y., Liu, Z., Zhou, Y., Peng, J., Wang, K., Huang, X., Xiao, S., and Zuo, J. (2018). S-Nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants. Mol Cell 71, 10.1016/j.molcel.2018.1005.1024. (* These authors contributed equally)2. Wang, Q.*, Nian, J.*, Xie, X.*, Yu, H., Zhang, J., Bai, J., Dong, G., Hu, J., Bai, B., Chen, L., Xie, Q., Feng, J., Yang, X., Peng, J., Chen, F., Qian, Q., Li, J., Zuo, J. (2018). Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nat Commun 9: 735. (* These authors contributed equally)3. Hu, J.*, Yang, H.*, Mu, J., Lu, T., Peng, J., Deng, X., Kong, Z., Bao, S., Cao, X., Zuo, J. (2017). Nitric oxide regulates protein methylation during stress responses in plants. Mol Cell, 67: 702-710. (* These authors contributed equally)4. Yang, X.*, Nian, J.*, Xie, Q., Feng, J., Zhang, F., Jing, H., Zhang, J., Dong, G., Liang, Y., Peng, J., Wang, G., Qian, Q., Zuo, J. (2016). Rice ferredoxin-dependent glutamate synthase regulates nitrogen-carbon metabolomes and is genetically differentiated between japonica and indica subspecies. Mol Plant, 9: 1520-1534. (* These authors contributed equally)5. Xie, Q.*, Liang, Y.*, Zhang, J., Zheng, H., Dong, G., Qian, Q., Zuo, J. (2016). Involvement of a putative bipartite transit peptide in targeting rice pheophorbide a oxygenase into chloroplasts for chlorophyll degradation during leaf senescence. J Genet Genomics, 43: 145-154. (* These authors contributed equally)6. Bai, J.*, Zhu, X.*, Wang, Q.*, Zhang, J., Chen, H., Dong, G., Zhu, L., Zheng, H., Xie, Q., Nian, J., Chen, F., Fu, Y., Qian, Q., Zuo, J. (2015). RiceTUTOU1encodes a suppressor of cAMP receptor-like protein that is important for actin organization and panicle development. Plant Physiol, 169: 1179-1191. (* These authors contributed equally)7. Jing, H.*, Yang, X.*, Zhang, J., Liu, X., Zheng, H., Dong, G., Nian, J., Feng, F., Xia, B., Qian, Q., Li, J., and Zuo, J. (2015). Peptidyl-prolyl isomerization targets rice Aux/IAAs for degradation during auxin signaling. Nat Commun, 6: 7395. (* These authors contributed equally)8. Yang, H.*, Mu, J.*, Chen, L., Feng, J. Hu, J., Li, L.,Zhou, J.-M., and Zuo, J (2015). S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses. Plant Physiol, 167: 1604-1615. (* These authors contributed equally)9. Hu, J., Huang, X., Chen, L., Sun, X., Lu, C., Zhang, L., Wang, Y., and Zuo, J. (2015). Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiol, 167: 1731-1746. 10. Zuo, J., and Li, J. (2014). Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet, 48: 99-118.11. Guan, C., Wang, X., Feng, J., Hong, S., Liang, Y., Ren, B., and Zuo, J. (2014). Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of ABI5 protein in Arabidopsis. Plant Physiol, 164: 1515-1526.12. Zuo, J., and Li, J. (2014). Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years. Nat Sci Rev, 1: 253-276.13. Ren, B.*, Chen, Q.*, Hong, S., Zhao, W., Feng, J., Feng, H., and Zuo, J. (2013). The Arabidopsis eukaryotic translation initiation factor eIF5A-2 regulates root protoxylem development by modulating cytokinin signaling. Plant Cell. 25: 3841-3857. (* These authors contributed equally)14. Li, Y., Chen, L., Mu, J. and Zuo, J. (2013). LESION SIMULATING DISEASE1 interacts with catalases to regulate hypersensitive cell death in Arabidopsis. Plant Physiol. 163: 1059-1070.15. Zheng, H., Li, S., Ren, B., Zhang, J., Ichii, M., Taketa, S., Tao, Y., Zuo, J., and Wang, H. (2013). LATERAL ROOTLESS2, a cyclophilin protein, regulates lateral root initiation and auxin signaling pathway in rice. Mol Plant. 6: 1719-1721.16. Li, J.*, Mu, J.*, Bai, J.*, Fu, F., Zou, T., An, F., Zhang, J., Jing, H., Wang, Q., Li, Z., Yang, S., and Zuo, J. (2013). PARAQUAT RESISTANT 1, a Golgi-localized putative transporter protein, is involved in intracellular transport of paraquat. Plant Physiol. 162: 470-483. (* These authors contributed equally)17. Feng, J., Wang, C., Chen, Q., Chen, H., Ren, B., Li, X., and Zuo, J. (2013). S-nitrosylation of phosphotransfer proteins represses cytokinin signaling. NatCommun. 4: 1529.18. Mu, J., Tan, H., Hong, S., Liang, Y., and Zuo, J. (2013). Arabidopsis transcription factor genes NF-YA1, 5, 6 and 9 play redundant roles in male gametogenesis, embryogenesis and seed development. Mol Plant. 6: 188-201.19. Tan, H., Yang, X., Zhang, F., Zheng, X., Qu, C., Mu, J., Fu, F., Li, J., Guan, R., Zhang, H., Wang, G., and Zuo, J. (2011). Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol. 156: 1577-1588.20. Deng, Y.*, Dong, H.*, Mu, J., Ren, B., Zheng, B., Ji, Z., Yang, W.-C., Liang, Y., Zuo, J. (2010). Arabidopsis histidine kinase CKI1 acts upstream of HISTIDINE PHOSPHOTRANSFER PROTEINS to regulate female gametophyte development and vegetative growth. Plant Cell. 22: 1232–1248. (* These authors contributed equally)21. Wang, X., Xue, L., Sun, J., Zuo. J. (2010). The Arabidopsis BE1 gene, encoding a putative glycoside hydrolase localized in plastids, plays crucial roles during embryogenesis and carbohydrate metabolism. J Integr Plant Biol. 52: 273–288.22. Chen, R., Sun, S., Wang, C., Li, Y., Liang, Y., An, F., Li, C., Dong, H., Yang, X., Zhang, J., and Zuo, J. (2009). The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. CellRes. 19: 1377-1387.23. Ren, B., Liang, Y., Deng, Y., Chen, Q., Zhang, J., Yang, X., and Zuo, J. (2009). Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Res. 19: 1178-1190.24. Wang, X.*, Niu, Q-W.*, Teng, C., Li, C., Mu, J., Chua, N.-H., and Zuo, J. (2009). Overexpression of PGA37/MYB118 and MYB115 promotes vegetative-to-embryonic transition in Arabidopsis. Cell Res. 19: 224-235. (* These authors contributed equally)25. Teng, C.*, Dong, H.*, Shi, L.*, Deng, Y., Mu, J., Zhang, J., Yang, X., and Zuo, J. (2008). Serine palmitoyltransferase, a key enzyme for de novo synthesis of sphingolipids, is essential for male gametophyte development in Arabidopsis. PlantPhysiol. 146: 1322-1332. (* These authors contributed equally)26. Mu, J., Tan, H., Zheng, Q., Fu, F., Liang, Y., Zhang, J., Yang, X., Wang, T., Chong, K., Wang, X., and Zuo, J. (2008). LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis thaliana. PlantPhysiol. 148: 1042-1054.27. Shi, L.*, Bielawski, J.*, Mu, J.* , Dong, H., Teng, C., Zhang, J., Yang, X., Tomishige, N., Hanada, K., Hannun, Y.A., and Zuo, J. et al. (2007). Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res. 17: 1030-1040. (* These authors contributed equally)28. Feng, H., Chen, Q., Feng, J., Zhang, J, Yang, X., and Zuo, J (2007). Functional characterization of the Arabidopsis eukaryotic translation initiation factor 5A-2 (eIF-5A-2) that plays a crucial role in plant growth and development by regulating cell division, cell growth and cell death. Plant Physiol. 144: 1531-1545.29. Dong, H.*, Deng, Y.*, Mu, J., Lu, Q., Wang, Y., Xu, Y., Chu, C., Chong, K., Lu, C., and Zuo, J. (2007). The ArabidopsisSpontaneous Cell Death1 gene, encoding a z-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signaling. Cell Res. 17: 458-470. (* These authors contributed equally)30. Feng, H.*, An, F.*, Zhang, S., Ji, J., Ling, H., and Zuo, J. (2006). Light-regulated, tissue-specific, and cell differentiation-specific expression of the Arabidopsis Fe(III)-chelate reductase gene AtFRO6. Plant Physiol. 140: 1345-1354. (* These authors contributed equally)31. Zheng, B.*, Deng, Y.*, Mu, J., Ji, Z., Xiang, T., Niu, Q.-W., Chua, N.-H., Zuo, J. (2006). Cytokinin affects circadian-clock oscillation in a phytochrome B- and Arabidopsis Response Regulator4-dependent manner. Physiol Plant. 127: 277–292. (* These authors contributed equally)32. Sun, J., Hirose, N., Wang, X., Wen, P., Xue, L., Sakakibara, H., and Zuo, J. (2005). The Arabidopsis SOI33/AtENT8 gene encodes a putative equilibrative nucleoside transporter that is involved in cytokinin transport in planta. J Integrat Plant Biol. 47: 588-603.33. Sun, J.*, Niu, Q.-W.*, Tarkowski, P., Zheng, B., Tarkowska, D., Sandberg, G., Chua, N.-H., and Zuo, J. (2003). The ArabidopsisAtIPT8/PGA22 gene encodes an isopentenyl transferase that is involved in denovo cytokinin biosynthesis. PlantPhysiol. 131:167-176. (* These authors contributed equally)34. Zuo, J., Niu, Q., Ikeda, Y., and Chua, N.-H. (2002). Marker-free transformation: Increasing transformation frequency by the use of regeneration-promoting genes. Curr Opin Biotechnol. 13: 173-180.35. Zuo, J., Hare, P.D., and Chua, N.H. (2006). Applications of chemical-inducible expression systems in functional genomics and biotechnology. In “Methods in Molecular Biology-Arabidopsis Protocols”, eds. Salinas, J., and Sanchez-Serrano, J.J., pp 329-342. Humana Press, NJ.36. 任勃* 王兴春* 冯健* 杨淑华 左建儒 (2012) 细胞分裂素 (pp. 40-64,许智宏 薛红卫主编 《植物激素作用的分子机理》),上海科学出版社. (* 同等贡献)37. 邓岩* 王兴春* 杨淑华 左建儒(2006)细胞分裂素: 代谢、信号转导、交叉反应与农艺性状改良. 植物学通报, 23: 478-498. (* 同等贡献)38. 张健* 徐金相* 孔英珍* 纪振动* 王兴春* 安丰英* 李超* 孙加强 张素芝 杨晓辉 牟金叶 刘新仿 李家洋 薛勇彪 左建儒 (2005) 化学诱导激活型拟南芥突变体库的构建及分析. 遗传学报 32: 1082-1088. (* 同等贡献)39. 郑丙莲 张素芝 孙加强 邓岩 左建儒(2003)细胞分裂素信号转导:已知的简单性与未知的复杂性. 科学通报 48: 885-891.