定位于工业微生物的系统代谢工程研究。致力于开发适用于工业微生物的高效、自动化基因组编辑工具,采用系统代谢工程技术方法拓展工业微生物的底物谱和产物谱,实现生物转化甲醇、二氧化碳等碳一原料、甘油等工农业废弃物合成大宗和精细化学品。
发表SCI论文30余篇,申请中国发明专利10余项,PCT专利1项。
代表论著:
1.Wang, Y.#, Liu, Y.#, Li, J., Yang, Y., Ni, X., Cheng, H., Huang, T., Guo, Y., Ma, H., Zheng, P.*, Wang, M., Sun, J.*, Ma, Y., 2019. Expanding targeting scope, editing window, and base transition capability of base editing in Corynebacterium glutamicum. Biotechnol Bioeng 116, 3016–3029.
2.Wang, Y.#, Liu, Y.#, Liu, J., Guo, Y., Fan, L., Ni, X., Zheng, X., Wang, M., Zheng, P.*, Sun, J.*, Ma, Y., 2018. MACBETH: multiplex automated Corynebacterium glutamicum base editing method. Metab Eng 47, 200–210.
3.Wang, Y., Cao, G., Xu, D., Fan, L., Wu, X., Ni, X., Zhao, S., Zheng, P.*, Sun, J.*, Ma, Y., 2018. A novel Corynebacterium glutamicum L-glutamate exporter. Appl Environ Microbiol 84, e02691-17.
4.Tuyishime, P.#, Wang, Y.#, Fan, L., Zhang, Q., Li, Q., Zheng, P.*, Sun, J.*, Ma, Y., 2018. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metab Eng 49, 220–231.
5.Fan, L.#, Wang, Y.#, Tuyishime, P., Gao, N., Li, Q., Zheng, P.*, Sun, J.*, Ma, Y., 2018. Engineering artificial fusion proteins for enhanced methanol bioconversion. ChemBioChem 19, 2465–2471.
6.Liu, J.#, Wang, Y.#, Lu, Y., Ni, X., Guo, X., Zhao, J., Chen, J., Dele-Osibanjo, T., Zheng, P.*, Sun, J.*, Ma, Y., 2018. Mutations on peptidoglycan synthesis gene ponA improve electro-transformation efficiency of Corynebacterium glutamicum ATCC 13869. Appl Environ Microbiol 84, e02225-18.
7.Liu, J.#, Wang, Y.#, Zheng, P.*, Sun, J.*, 2018. CRISPR/Cas9-mediated ssDNA recombineering in Corynebacterium glutamicum. Bio-Protocol 8, e3038.
8.Wang, Y.#, Tao, F.#, Xin, B., Liu, H., Gao, Y., Zhou, N.Y., Xu, P.*, 2017. Switch of metabolic status: redirecting metabolic flux for acetoin production from glycerol by activating a silent glycerol catabolism pathway. Metab Eng 39, 90–101.
9.Wang, X.#, Wang, Y.#, Liu, J.#, Li, Q., Zhang, Z., Zheng, P., Lu, F., Sun, J.*, 2017. Biological conversion of methanol by evolved Escherichia coli carrying a linear methanol assimilation pathway. Bioresour Bioprocess 4, 41.
10.Wang, Y.#, Tao, F.#, Ni, J., Li, C., Xu, P.*, 2015. Production of C3 platform chemicals from CO2 by genetically engineered cyanobacteria. Green Chem 17, 3100–3110.
11.Wang, Y.#, Tao, F.#, Xu, P.*, 2014. Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae. J Biol Chem 289, 6080–6090.
12.Wang, Y., Li, L., Ma, C.*, Gao, C., Tao, F., Xu, P.*, 2013. Engineering of cofactor regeneration enhances (2S,3S)-2,3-butanediol production from diacetyl. Sci Rep 3, 2643.
13.Wang, Y.#, Tao, F.#, Li, C., Li, L., Xu, P.*, 2013. Genome sequence of Klebsiella pneumoniae strain ATCC 25955, an oxygen-insensitive producer of 1,3-propanediol. Genome Announc 1, e00587-13.
14.Wang, Y.#, Tao, F.#, Tang, H., Xu, P.*, 2013. Genome sequence of Clostridium diolis strain DSM 15410, a promising natural producer of 1,3-propanediol. Genome Announc 1, e00542-13.
|